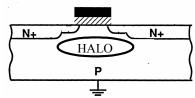
UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences EE130 Fall 2003

Test #4 1) Consider two NMOSFETs made with identical body doping, gate materials, and gate ox thickness. MOSFET "A" has a V _T of 0.5V and MOSFET "B" has a V _T of 0.2V. a) Which MOSFET most likely has a shorter channel length? How do you know this?
thickness. MOSFET "A" has a V_T of 0.5V and MOSFET "B" has a V_T of 0.2V.
a) Which MOSFET most likely has a shorter channel length? How do you know this?
b) What phenomenon causes the difference in V_T 's for the two MOSFETs?
c) What is the consequence of this reduction in V_T on (give reasons):
i) On-current (I_{Dsat})
ii) Off-current ($I_D @ V_{GS} = 0V, V_{DS} = V_{DD}$)
d) Suppose I try to reduce this V_T roll-off effect. Should I increase or decrease the following parameters (give reasons)?
$i)$ t_{ox}
ii) r _j
iii) the doping right near the S/D junctions
e) What is the disadvantage of reducing r_j ? Give your answer in terms of its impact on reasons)
i) On-current


ii) Switching speed

2) Consider a MOSFET that is operating in punchthrough, as shown below.

a) Draw a band diagram for the MOSFET along slice a-a'. Assume the MOSFET is in flatband mode at the surface.

b) We often increase the punchthrough voltage by placing a region of heavy doping (called a "halo" below the channel of the MOSFET, as shown below.

Why do we use a halo and not just dope the entire body more heavily. Answer the question in terms of the effect of heavy doping on:

- i) V_T
- ii) I_{ON}
- iii) Mobility

d) What is the V_{FB} for the MOSFET now?